Towards supervisory control of interactive Markov chains
نویسنده
چکیده
We propose a model-based systems engineering framework for supervisory control of stochastic discrete-event systems with unrestricted nondeterminism. We intend to develop the proposed framework in four phases outlined in this paper. Here, we study in detail the first step which comprises investigation of the underlying model and development of a corresponding notion of controllability. The model of choice is termed Interactive Markov Chains, which is a natural semantic model for stochastic variants of process calculi and Petri nets, and it requires a process-theoretic treatment of supervisory control theory. To this end, we define a new behavioral preorder, termed Markovian partial bisimulation, that captures the notion of controllability while preserving correct stochastic behavior. We provide a sound and ground-complete axiomatic characterization of the preorder and, based on it, we define two notion of controllability. The first notion conforms to the traditional way of reasoning about supervision and control requirements, whereas in the second proposal we abstract from the stochastic behavior of the system. For the latter, we intend to separate the concerns regarding synthesis of an optimal supervisor. The control requirements cater only for controllability, whereas we ensure that the stochastic behavior of the supervised plant meets the performance specification by extracting directive optimal supervisors.
منابع مشابه
Stochastic Dynamic Programming with Markov Chains for Optimal Sustainable Control of the Forest Sector with Continuous Cover Forestry
We present a stochastic dynamic programming approach with Markov chains for optimal control of the forest sector. The forest is managed via continuous cover forestry and the complete system is sustainable. Forest industry production, logistic solutions and harvest levels are optimized based on the sequentially revealed states of the markets. Adaptive full system optimization is necessary for co...
متن کاملEmpirical Bayes Estimation in Nonstationary Markov chains
Estimation procedures for nonstationary Markov chains appear to be relatively sparse. This work introduces empirical Bayes estimators for the transition probability matrix of a finite nonstationary Markov chain. The data are assumed to be of a panel study type in which each data set consists of a sequence of observations on N>=2 independent and identically dis...
متن کاملThe Rate of Rényi Entropy for Irreducible Markov Chains
In this paper, we obtain the Rényi entropy rate for irreducible-aperiodic Markov chains with countable state space, using the theory of countable nonnegative matrices. We also obtain the bound for the rate of Rényi entropy of an irreducible Markov chain. Finally, we show that the bound for the Rényi entropy rate is the Shannon entropy rate.
متن کاملEvaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes
Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded DNA virus. There were two approaches for prediction of each Markov Model parameter,...
متن کاملTime Delay and Data Dropout Compensation in Networked Control Systems Using Extended Kalman Filter
In networked control systems, time delay and data dropout can degrade the performance of the control system and even destabilize the system. In the present paper, the Extended Kalman filter is employed to compensate the effects of time delay and data dropout in feedforward and feedback paths of networked control systems. In the proposed method, the extended Kalman filter is used as an observer ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017